1x+7x^2=359

Simple and best practice solution for 1x+7x^2=359 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1x+7x^2=359 equation:



1x+7x^2=359
We move all terms to the left:
1x+7x^2-(359)=0
We add all the numbers together, and all the variables
7x^2+x-359=0
a = 7; b = 1; c = -359;
Δ = b2-4ac
Δ = 12-4·7·(-359)
Δ = 10053
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10053}=\sqrt{9*1117}=\sqrt{9}*\sqrt{1117}=3\sqrt{1117}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{1117}}{2*7}=\frac{-1-3\sqrt{1117}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{1117}}{2*7}=\frac{-1+3\sqrt{1117}}{14} $

See similar equations:

| -2(x-5)=3x-(3x+2) | | 5x+40+3x+20=180 | | 9(m+2.2)=95.4 | | -3(u+5)=2(u-6) | | 8/18=6/y | | 5^3x=52 | | 2p-6p=32 | | 3(x+5.2)=16.545 | | 21/6z+12=1/4 | | 9.6x=7.5-x | | 2/3·(9y-15)=14 | | 2y+16=2(y+8) | | 9(v+5)=-7v+13 | | 1/y+8=3 | | 7/6=1/3k | | 4/5(b-5)=32 | | 9(v-5)=-7v+13 | | 6x^2+30-36=0 | | 1.2+x=6.75 | | p=8=14.1 | | 6(2x-1)=3(4x+2) | | 2x+4x=82 | | -6w+3(w+8)=15 | | (1/2x)-1=(1/3)(^2x-1) | | -t/2.5=2.4 | | 6⋅x=9 | | -6+6p=5p-9 | | 3x+10=6x+12 | | 18x=1008 | | 2(^x+6)=2x+15 | | 60x=160 | | 3y=35=4y |

Equations solver categories